A note on partial numberings
نویسندگان
چکیده
The different behaviour of total and partial numberings with respect to the reducibility preorder is investigated. Partial numberings appear quite naturally in computability studies for topological spaces. The degrees of partial numberings form a distributive lattice which in the case of an infinite numbered set is neither complete nor contains a least element. Friedberg numberings are no longer minimal in this situation. Indeed, there is an infinite descending chain of non-equivalent Friedberg numberings below every given numbering, as well as an uncountable antichain.
منابع مشابه
Partial Numberings and Precompleteness
Precompleteness is a powerful property of numberings. Most numberings commonly used in computability theory such as the Gödel numberings of the partial computable functions are precomplete. As is well known, exactly the precomplete numberings have the effective fixed point property. In this paper extensions of precompleteness to partial numberings are discussed. As is shown, most of the importa...
متن کاملAn Isomorphism Theorem for Partial Numberings
As is well-known, two equivalent total numberings are computably isomorphic, if at least one of them is precomplete. Selivanov asked whether a result of this type is true also for partial numberings. As has been shown by the author, numberings of this kind appear by necessity in studies of effectively given topological spaces like the computable real numbers. In the present paper it is demonstr...
متن کاملStrong reducibility of partial numberings
A strong reducibility relation between partial numberings is introduced which is such that the reduction function transfers exactly the numbers which are indices under the numbering to be reduced into corresponding indices of the other numbering. The degrees of partial numberings of a given set with respect to this relation form an upper semilattice. In addition, Ershov’s completion constructio...
متن کاملGödel Numberings versus Friedberg Numberings
In [3], Rogers discussed the concept of Gödel numbering. He defined a semi-effective numbering, constructed a semi-lattice of equivalence classes of semi-effective numberings, and showed that all Gödel numberings belong to the unique maximal element of this semi-lattice. In [l], Friedberg gave a recursive enumeration without repetition of the set of partial recursive functions of a single varia...
متن کاملStability of representations of effective partial algebras
An algebra is effective if its operations are computable under some numbering. When are two numberings of an effective partial algebra equivalent? For example, the computable real numbers form an effective field and two effective numberings of the field of computable reals are equivalent if the limit operator is assumed to be computable in the numberings (theorems of Moschovakis and Hertling). ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Log. Q.
دوره 51 شماره
صفحات -
تاریخ انتشار 2005